Cyfrowa transformacja dzieje się na naszych oczach. Aby dotrzymać kroku konkurencji, coraz więcej firm produkcyjnych stosuje nowoczesne technologie i odchodzi od tradycyjnego podejścia na rzecz koncepcji Przemysłu 4.0 z wykorzystaniem Przemysłowego Internetu Rzeczy (IIoT). Równocześnie obserwujemy gwałtowny wzrost zainteresowania sztuczną inteligencją (AI), a wykorzystanie analityki w celu optymalizacji wydajności zakładów produkcyjnych staje się naturalnym rozwiązaniem. Jednak według ostatnich raportów firmy Gartner 85% projektów AI nie przynosi oczekiwanej wartości. Mimo wielu powodów, które mogą prowadzić do porażki, firmy przemysłowe mogą zwiększyć szanse na sukces, przygotowując swoje przedsiębiorstwa do nieuniknionego przejścia w kierunku organizacji opartej na danych, dzięki wdrożeniu analityki przemysłowej.

porządkowanie i agregacja danych - wdrożenie analityki przemysłowej

Agregacja i porządkowanie danych

Bez uporządkowanych danych wysokiej jakości nie ma analityki, ot co. Ten fakt jest jednym z najważniejszych czynników decydujących o sukcesie projektu AI i niestety często nie przywiązuje się do niego należytej wagi.

Największym wyzwaniem w dzisiejszych czasach nie jest brak technicznej możliwości przechwytywania danych ze starszego sprzętu znajdującego się na hali produkcyjnej (dzięki platformom IIoT i setkom gotowych do użycia sterowników i złączy, takich jak Kepware, które pozwalają na łatwe zbieranie danych z dosłownie każdego urządzenia przemysłowego), lecz fakt, że informacje są dystrybuowane pomiędzy wieloma systemami IT, fizycznymi lokalizacjami, o różnym poziomie jakości i z różną częstotliwością.

Można by rzec, że rozwiązaniem jest hurtownia danych (Data Warehouse), i jest to rzeczywiście stwierdzenie po części zasadne. Hurtownia danych zostały wprowadzone wiele lat temu jako ewolucja klasycznych RDMBS (relacyjnych systemów zarządzania bazą danych) w celu przechowywania i przetwarzania ogromnych ilości informacji (Big Data) w określonym celu. I to jest właśnie powód, dla którego klasyczne hurtownie danych zazwyczaj nie są tak użyteczne w przypadku AI – zawierają one już przetworzone dane, podczas gdy proces inżynierii funkcji (ekstrakcja istotnych informacji w celu dalszej analizy i obliczeń uczenia maszynowego) wymaga surowych danych.

Odpowiedź na to wyzwanie – jeziora danych (Data Lakes) – została opracowana kilka lat temu i została z powodzeniem zastosowana przez największych dostawców usług w chmurze. Cel tego rozwiązania jest prosty: zapewnienie łatwo dostępnego i łatwo edytowalnego miejsca do przechowywania surowych danych, które mogą być wykorzystane do dalszego przetwarzania. Warto wspomnieć, że nowoczesne podejście, nazywane czasem Data Lakehouse, umożliwia dodatkowo zarządzanie i modyfikowanie danych, co ostatecznie łączy elastyczność Data Lakes i transakcje ACID klasycznych hurtowni danych (dobrym przykładem technologii, która obecnie zyskuje popularność w tej dziedzinie, jest Snowflake).

Określenie racjonalnych i mierzalnych celów wdrażając analitykę przemysłową

Określenie racjonalnych i mierzalnych celów wdrażając analitykę przemysłową

Dopiero po ostatecznym zebraniu i zapisaniu danych przychodzi czas na odkrycie biznesowego przypadku użycia. Nie oznacza to, że przedsiębiorstwa przemysłowe nie powinny wcześniej myśleć o swoich bolączkach – wręcz przeciwnie – ale ich uwaga powinna być skupiona bardziej wokół wymiernych wartości biznesowych, a nie konkretnego fragmentu procesu produkcyjnego, który chciałyby zoptymalizować.

Bardzo często zdarza się, że wysokie oczekiwania co do wskaźnika ROI w zakresie analityki (zwłaszcza AI), wynikają ze sposobu myślenia kadry kierowniczej wysokiego szczebla, ale prawda jest okrutna – analityka nie jest czarodziejską różdżką, ponadto przed podjęciem próby rozwiązania zdefiniowanego problemu biznesowego nie ma się całkowitej pewności, że w ogóle da się go rozwiązać.

Dlatego też odpowiednia analiza procesu biznesowego i wybór odpowiedniego, a zarazem opłacalnego podejścia i przypadku użycia jest kluczowym krokiem do sukcesu każdego projektu z zakresu analityki przemysłowej.

Lepsze zrozumienie procesów biznesowych

Na szczęście istnieją narzędzia i rozwiązania, które mogą pomóc w lepszym zrozumieniu procesów biznesowych, zapewniając wgląd bezpośrednio w dane zbierane przez firmy i pomagają w udanym wdrożeniu analityki przemysłowej. Powszechnie określa się te narzędzia jako Business Intelligence (BI).

Siłą Business Intelligence jest z pewnością zdolność do wizualizacji Big Data w bardzo czytelny i przystępny sposób, zazwyczaj w formie zaawansowanych raportów, które prezentują szerokie spektrum biznesowych wskaźników KPI. W świecie przemysłowym BI może być wykorzystywany do agregacji danych OT (pochodzących z produkcji) z danymi IT (takimi jak ERP, PLM, CRM, HR, WMS i inne), co otwiera szereg możliwości wnoszenia wartości do biznesu i podejmowania lepszych decyzji, w tym wyboru najbardziej obiecujących przypadków użycia AI.

BI jest obecnie bardzo niedocenianą gałęzią analityki w sektorze przemysłowym, przede wszystkim dlatego, że firmy produkcyjne nadal boją się wychodzić poza swoje środowiska lokalne i wykorzystywać chmurę, podczas gdy zastosowanie rozwiązania Business Intelligence (np. PowerBI) jest prawie niemożliwe (i co ważniejsze – nieopłacalne), gdy dane nie są gromadzone w chmurze.

Zacznij od małych rzeczy, popełniaj błędy, myśl perspektywicznie

Innym czynnikiem jest metodologia wdrażania analityki przemysłowej, która zazwyczaj nie jest właściwie zdefiniowana i zastosowana. W przypadku AI trudno jest przewidzieć przyszłość (co jest osobliwym stwierdzeniem ze względu na fakt, że AI jest często wykorzystywana do prognozowania kolejnych zdarzeń). Klasyczne podejście do rozwoju oprogramowania IT (wykorzystanie metodyk zwinnych Agile) zwykle prowadziło do eskalacji przy wdrażaniu analityki przemysłowej lub nawet jego przerwania z powodu braku oczekiwanych rezultatów – dlatego przed rozpoczęciem projektu niezbędne jest dokładne określenie kamieni milowych, jak również poinformowanie przedsiębiorstw przemysłowych – przed podjęciem decyzji o inwestycji w analitykę – o tym, co je potencjalnie czeka.

Po wybraniu przypadku biznesowego, którym należy się zająć, najlepszym podejściem jest skupienie wysiłków na wdrożeniu PoV (Proof of Value), który jest formą studium wykonalności. Nie musi to być koniecznie najnowocześniejszy model uczenia maszynowego, który prześcignie inne, lecz taki, który dostarczy wiedzy, jasności i pewności, że dany kierunek nadaje się do dalszej eksploracji. Jeśli PoV nie wykaże dowodów wartości – co nie jest rzadkością – firmy mogą zdecydować, czy chcą zbadać przyczyny niepowodzenia i zająć się nimi (może należy zainstalować więcej czujników na linii produkcyjnej, zebrać więcej danych, zwiększyć częstotliwość itd.), czy raczej zrobić krok do tyłu, zaakceptować brak sukcesu i wybrać inny obiecujący przypadek wdrożenia, który ostatecznie może przynieść korzyści firmie.

Kiedy projekt PoV zakończy się sukcesem, można zaprojektować, opracować i wdrożyć oprogramowanie gotowe do produkcji w fabryce pilotażowej z zamiarem rozszerzenia go na całą organizację, ale najważniejsze jest to, że te częste niepowodzenia na wczesnych etapach projektu nie mogą być traktowane jako porażki, lecz raczej jako kroki niezbędne do osiągnięcia końcowego sukcesu.

Lepsze zrozumienie procesów biznesowych

Bądź organizacją opartą na danych dzięki wdrożeniu analityki przemysłowej

Gdy firma dostrzeże wartość, jaka płynie z pierwszego projektu analitycznego (czy to BI, czy AI), nie będzie już odwrotu. Coraz więcej obszarów przedsiębiorstw ulega cyfryzacji, kolejne źródła danych są agregowane i kontekstualizowane, dzięki czemu możliwe jest podejmowanie lepszych, bardziej świadomych i dojrzalszych decyzji. Kwestią czasu jest pojawienie się w każdej firmie produkcyjnej analityki na porządku dziennym. Firma musi jedynie być na tyle dojrzała, aby móc się w odpowiedni sposób dostosować do tego inspirującego trendu.

Im szybciej sektor przemysłowy przestawi się na wykorzystywanie mocy, która kryje się pod tonami informacji już zgromadzonych na jego własnym podwórku i przekształci się w prawdziwą organizację opartą na danych, tym szybciej procesy produkcyjne zostaną zoptymalizowane, a fabryki w krótkim czasie staną się bardziej przyjazne dla środowiska.

 

Najważniejsze wnioski – udane wdrożenie analityki przemysłowej:

  1. Zbieraj i przechowuj dobrej jakości dane z OT/IT w chmurze (Data Lake) za pomocą Internetu Rzeczy (IoT)
  2. Zdefiniuj mierzalny i realistyczny cel, który chcesz osiągnąć dzięki AI
  3. Wykorzystuj BI w celu zapewnienia natychmiastowej wartości w procesie podejmowania decyzji biznesowych
  4. Dostosuj metodologię prowadzenia projektów, aby sprostać unikalnym cechom wdrażania analityki przemysłowej
  5. Zaufaj swoim danym i nie bój się opierać swoich decyzji biznesowych na zebranych informacjach

Już dziś możesz poznać możliwości naszego rozwiązania Industrial Analytics Accelerator.
Poznaj możliwości i zobacz demo.

Bez wahania możesz się z nami skontaktować, jeśli chcesz jeszcze lepiej i szybciej wykorzystywać potencjał swojego przedsiębiorstwa.

_Wszystkie wpisy z tej kategorii

blogpost
Artykuły

Trendy sztucznej inteligencji w branży farmaceutycznej w 2025 roku

Sztuczna inteligencja (AI) stała się nieodłącznym elementem nowoczesnej medycyny i farmacji. W 2025 roku jej znaczenie w branży farmaceutycznej będzie bardziej widoczne niż kiedykolwiek. Wdrożenie technologii sztucznej inteligencji, wprowadzenie zaawansowanych algorytmów, integracja z big data i rozwój technologii obliczeniowych zmienią sposoby projektowania leków, prowadzenia badań klinicznych oraz personalizacji terapii.

Czytaj więcej
blogpost
Artykuły

Wpływ sztucznej inteligencji na branżę obsługi klienta

Obsługa klienta, choć często niedoceniana, jest istotnym działem nowoczesnych firm, odpowiedzialnym za utrzymywanie i wzmacnianie relacji z klientami. W ostatnich latach rewolucja w obsłudze klienta następuje na skutek wdrożenia licznych rozwiązań AI. Wsparcie sztucznej inteligencji umożliwia organizacjom realizację wydajnej, spersonalizowanej i responsywnej obsługi klienta, umożliwiając budowanie silnych relacji na konkurencyjnym rynku. Ale spójrzmy prawdzie w […]

Czytaj więcej
blogpost
Artykuły

Przemysł motoryzacyjny a sztuczna inteligencja

Branża motoryzacyjna przechodzi rewolucję napędzaną przez szybki rozwój technologii sztucznej inteligencji (AI). Sztuczna inteligencja, w tym rozwój autonomicznych pojazdów, embedded AI, wizja komputerowa, przetwarzanie języka naturalnego i uczenie maszynowe w branży motoryzacyjnej, zmienia wszystko, od sposobu produkcji samochodów po interakcję z klientami. Z tego artykułu dowiesz się, w jaki sposób innowacje w zakresie sztucznej inteligencji: […]

Czytaj więcej
blogpost
Artykuły

5 najlepszych praktyk analityki w czasie rzeczywistym

Analityka w czasie rzeczywistym rewolucjonizuje proces podejmowania decyzji, dzięki zapewnieniu natychmiastowego wglądu w działania strategiczne. Odkryj kluczowe strategie sukcesu, od optymalizacji czasu analityki, po wspieranie płynnego udostępniania danych ponad granicami organizacyjnymi. Dowiedz się jak wykorzystać potencjał analityki w czasie rzeczywistym, w celu usprawnienia operacji i uzyskania przewagi konkurencyjnej. Wprowadzenie W szybko zmieniającym się świecie cyfrowym, […]

Czytaj więcej
blogpost
Artykuły

Czy sztuczna inteligencja zdominuje wizję przyszłości i rozwoju cloud computing?

Początek roku to okres wzmożonych podsumowań minionych miesięcy, a także przygotowywania planów na kolejne. W tym czasie pojawia się wiele mniej lub bardziej trafnych predykcji na temat tego, czego możemy spodziewać się w najbliższej przyszłości w ramach oferowanych przez dostawców usług w chmurze. W przypadku chmury obliczeniowej możemy z dużym prawdopodobieństwem przewidzieć, co w takich […]

Czytaj więcej
blogpost
Artykuły

Bezpieczeństwo chmury Azure: Jak zapewnić model Zero Trust i wykorzystać AI na swoją korzyść? (cz.2)

W poprzednim artykule poruszyliśmy temat czym jest model Zero Trust i dlaczego jest tak istotny w zapewnieniu najwyższego poziomu bezpieczeństwa zasobów firmy w chmurze i poza nią. W tej części będziemy kontynuować przegląd usług chmury publicznej Azure a także skupimy się na wątku AI w temacie bezpieczeństwa. Microsoft Defender dla chmury Microsoft Azure to rozległe […]

Czytaj więcej
blogpost
Artykuły

Bezpieczeństwo chmury Azure: Jak zapewnić model Zero Trust i wykorzystać AI na swoją korzyść? (cz.1)

Od czasu globalnej popularyzacji pracy zdalnej, zespoły cyberbezpieczeństwa stają przed coraz większymi wyzwaniami, aby zapewnić skuteczny i bezpieczny dostęp do krytycznych zasobów oraz danych organizacji, a także zagwarantować ich bezpieczne przechowywanie. Skomplikowane ataki phishingowe (wpływające krytycznie na bezpieczeństwo plików oraz infrastruktury), nie rzadko wspomagane AI, w wyniku których ujawniane są dane uwierzytelniające, pozwalają na ataki z […]

Czytaj więcej
blogpost
Artykuły

7 sposobów jak widoczność danych zwiększa efektywność produkcji

XXI wiek to czas kiedy dane odgrywają coraz większą rolę, a trend ten zauważalny jest również w branży produkcyjnej. Gromadzenie ich to jednak za mało. Dopiero dzięki dostępowi do danych operacyjnych i zapewnieniu ich widoczności w czasie rzeczywistym, firmy mogą monitorować linie produkcyjne, identyfikować wąskie gardła i podejmować oparte na danych decyzje, również z wykorzystaniem sztucznej inteligencji (AI) i uczenia maszynowego (ML).

Czytaj więcej
blogpost
Artykuły

Obliczenia kwantowe: Kot Schrödingera zadomowił się w chmurze

Zapnij pasy i dołącz  do mnie w podróży do świata, w którym kot może być zarówno martwy, jak i żywy, a cząsteczka może znajdować się w dwóch miejscach jednocześnie. Odkryjemy fascynujący świat obliczeń kwantowych (Quantum Computing) i ich rolę w przetwarzaniu w chmurze.

Czytaj więcej
blogpost
Artykuły

Optymalizuj zapasy i oszczędzaj dzięki trafnemu prognozowaniu popytu w handlu detalicznym

Odkryj, dlaczego prognozowanie popytu jest kluczowym elementem w handlu detalicznym. Tradycyjne metody mają swoje ograniczenia w erze cyfrowej transformacji, ale nowoczesne rozwiązania oparte na sztucznej inteligencji i uczeniu maszynowym pozwalają na bardziej precyzyjne prognozowanie. Sprawdź, jakie możliwości oferują nowe technologie i jak mogą wpłynąć na prognozowania popytu w łańcuchu dostaw.

Czytaj więcej
blogpost
Artykuły

W jaki sposób sztuczna inteligencja wpłynie na prognozowanie popytu w łańcuchu dostaw?

Sprawdź, jak sztuczna inteligencja rewolucjonizuje zarządzanie łańcuchem dostaw, poprawiając prognozowanie popytu i efektywność operacji. Kliknij, aby dowiedzieć się więcej.

Czytaj więcej
blogpost
Artykuły

(r)Ewolucja w zarządzaniu danymi produkcyjnymi. Platformy danych w chmurze

Platformy danych oparte na chmurze stają się przełomem w zarządzaniu danymi produkcyjnymi. W przeszłości firmy zmagały się z zarządzaniem ogromnymi ilościami danych generowanych przez procesy produkcyjne bez wsparcia automatyzacjami, AI i często w modelu rozproszonym tzn. dane pochodziły i były wyświetlane w różnych źródłach. Nie było to ani wygodne, ani efektywne. Na szczęście ten czas już minął.

Czytaj więcej
blogpost
Artykuły

Jak AI Data Discovery pomaga firmom produkcyjnym?

Odkryj przyszłość przemysłu produkcyjnego dzięki usłudze AI Data Discovery i chmurze! Poznaj, jak te technologie i usługi eliminują straty i zwiększają efektywność branży produkcyjnej.

Czytaj więcej
blogpost
Artykuły

Predictive Maintenance (konserwacja predykcyjna) – biały kruk vs realistyczne rozwiązanie?

Jak donosi Forbes i szereg innych, niedawno opublikowanych raportów na temat najbliższej przyszłości branży produkcyjnej, predictive maintenance jest postrzegane jako jeden z niekwestionowanych, wiodących trendów na rok 2022, jeśli chodzi o Przemysł 4.0. Już dziś można zaobserwować pojawiające się zapotrzebowanie na zaawansowaną analitykę i prognozowanie oparte na sztucznej inteligencji. Mimo niewątpliwej wartości, która się z […]

Czytaj więcej

Zostańmy w kontakcie

Skontaktuj się