Znaczenie prognozowania popytu w handlu detalicznym

Sektor detaliczny jest zróżnicowany i dynamiczny, z roku na rok branża wydaje się coraz bardziej rozwijać, niezależnie od koniunkturalnych cykli czy kosztów kapitałowych. Zapasy są największą inwestycją detalisty. Konkurenci prześcigają się w dostępie do nowych możliwości i wykorzystaniu technologii w celu optymalizacji zapasów i magazynów. Zaawansowana analityka danych i sztuczna inteligencja pomagają detalistom przewidywać popyt, redukować koszty i podejmować trafniejsze decyzje biznesowe. Detaliści zazwyczaj składają zamówienia na zapasy magazynowe na wiele miesięcy przed rozpoczęciem sprzedaży danego produktu. Koszty związane z zapasami wykraczają daleko poza płatności dla dostawców. Do tego dochodzą koszty związane z działalnością centrów dystrybucyjnych. Po sprowadzeniu zapasów produkt generuje koszty utrzymania, a także koszty związane z przestojami i cenami rozliczeniowymi. Ponadto zapasy blokują przepływ gotówki i pochłaniają przestrzeń magazynową, która mogłaby być zagospodarowana przez inne potencjalne produkty, co z kolei powoduje wzrost kosztów.  Dlatego tak ważne jest wdrożenie najlepszych praktyk i realnie działających rozwiązań, które pozwolą zoptymalizować zapasy i zaoszczędzić pieniądze dzięki trafnemu prognozowaniu popytu detalicznego.

Dowiedz się więcej o cyfrowym łańcuchu dostaw i analizie klientów.

Prognozowanie popytu — ograniczenia w erze cyfrowej transformacji

Tradycyjne prognozy detaliczne z trudem radzą sobie z tak dynamicznym rynkiem detalicznym. W przeszłości detaliści mogli ograniczyć prognozy SKU do najważniejszych towarów, zaś dla reszty asortymentu tworzyli prognozy obejmujące kategorie lub podkategorie. Ta strategia nie ma zastosowania w erze cyfrowej transformacji i dynamicznie zmieniającym się środowisku handlu detalicznego. W celu optymalizacji zapasów kupujący potrzebuje bardziej precyzyjnej wiedzy na temat zapotrzebowania na każdy produkt. Popyt różni się w zależności od jego pozycji w sklepie, pory roku, czy trendów panujących na rynku.  Do tego dochodzi rosnąca potrzeba sprostania realiom wielokanałowej sprzedaży detalicznej.

Trafna prognoza pozwoliłaby rozwiązać większość tych problemów i obniżyć koszty. Mimo że rola dokładnych prognoz jest niezaprzeczalna, większość firm akceptuje nawet 20-40% błędnych obliczeń, co oznacza ogromny margines błędu związany z procesem prognozowania popytu oraz straty finansowe z tym związane.

W poniższym artykule przedstawiamy przyczyny takich sytuacji oraz proponujemy rozwiązanie, które bezpośrednio przekłada się na zauważalne oszczędności dla firm z każdego segmentu rynku.

Prognozowanie popytu — gotowe rozwiązania

Istnieje wiele sposobów na wdrożenie prognozowania popytu w zależności od różnych czynników, takich jak obszar działalności czy wielkość firmy — nie wspominając już o programie Microsoft Excel. Niemniej, jeśli w organizacji jest już wdrożony system ERP (Enterprise Resource Planning), istnieje spora szansa, że prognozowanie odbywa się bezpośrednio w nim. Oczywiście, nie wszystkie typy popytu da się uwzględnić, biorąc pod uwagę brak konkretnych danych (na przykład: jeśli chcielibyśmy przewidzieć zapotrzebowanie na zużycie energii w magazynie, najprawdopodobniej nie znajdziemy odpowiednich informacji na ten temat w systemie ERP). Jednakże typowe wyzwania związane z prognozowaniem w zarządzaniu łańcuchem są rzeczywiście możliwe do zrealizowania.

Główni dostawcy, tacy jak SAP, Oracle ERP i Infor, już wzbogacili swoje rozwiązania o zestaw wstępnie skonfigurowanych funkcji, które pozwalają użytkownikom łatwo prognozować popyt – zazwyczaj bez konieczności posiadania rozległego zaplecza informatycznego lub zestawu umiejętności analizy danych. Systemy te nie są jednak w pełni rozwiniętymi platformami analitycznymi. W związku z tym musimy liczyć się z nieuniknionymi ograniczeniami, które się z nimi wiążą. Oznacza to, że korzystając z mechanizmu prognozowania opartego na ERP, mamy minimalną kontrolę nad operacjami matematycznymi i nie możemy wpływać na poprawę uzyskanych wyników. Raczej nie znajdziemy tu nic bardziej zaawansowanego niż klasyczne metody statystyczne, takie jak ARIMA czy regresja liniowa, co nie oznacza jednak, że tego typu modele są czymś złym przy prognozowaniu szeregów czasowych.

Nowoczesna metodologia prognozowania popytu

W rzeczywistości, tradycyjne techniki prognozowania nie są w stanie skutecznie sprostać dzisiejszym wymaganiom handlu detalicznego w zakresie przewidywania popytu. Dzięki zaawansowanym systemom analitycznym, które mogą wykorzystywać nowoczesne technologie, takie jak sztuczna inteligencja (AI), wszystkie zmienne, które wpływają na sprzedaż, mogą być również brane pod uwagę. TT PSC wykorzystuje własne algorytmy do oceny historii i wartości danych detalicznych w swoim rozwiązaniu do prognozowania popytu. Zrozumienie rzeczywistego popytu historycznego oraz optymalizacja łańcucha dostaw może pomóc detalistom w zidentyfikowaniu obszarów charakteryzujących się niskim poziomem zapasów, ale także ich nadmierną ilością.

Mowa tu o namacalnych możliwościach budowania przewagi konkurencyjnej poprzez minimalizowanie braków i redukowanie nadwyżek magazynowych, a tym samym zwiększanie sprzedaży i zmniejszanie strat. Analityka predykcyjna znajduje zastosowanie w różnych branżach – na przykład w produkcji półprzewodników, gdzie pozwoliła naszemu klientowi znacząco poprawić jakość procesów. Dzięki temu możliwe jest nie tylko lepsze zarządzanie łańcuchem dostaw, ale także zwiększenie przewidywalności biznesowej i lepsze wykorzystanie zasobów. Modele uczenia maszynowego (Machine Learning) są w stanie „nauczyć się” nowej rzeczywistości w ciągu dwóch tygodni, co przekłada się na zdolność do automatycznego reagowania na zmiany. Analiza statystyczna, uzupełniona wiedzą ekspercką, zapewnia przedsiębiorstwu nowe spojrzenie na bieżącą sytuację rynkową i pozwala przewidywać potencjalne zakłócenia w funkcjonowaniu łańcucha dostaw

Tradycyjni sprzedawcy opracowują prognozy bazowe za pomocą modeli szeregów czasowych i wykorzystują dane historyczne jako podstawę do przewidywania przyszłego popytu. Prognoza ta bywa często korygowana przy użyciu symulacji przyczynowej lub poprzez ręczne wprowadzanie danych. Jednak dzisiejsze firmy rezygnują z przestarzałych metod prognozowania popytu na rzecz technologii wykorzystujących sztuczną inteligencję i uczenie maszynowe. Nowoczesne podejście do analizy łańcucha dostaw umożliwia wykorzystywanie ogromnej ilości danych historycznych oraz pełnego potencjału mocy obliczeniowej dzisiejszych komputerów, co przekłada się na lepsze wyniki, zwłaszcza w dynamicznych środowiskach handlu detalicznego.

_Wszystkie wpisy z tej kategorii

blogpost
Artykuły

Trendy sztucznej inteligencji w branży farmaceutycznej w 2025 roku

Sztuczna inteligencja (AI) stała się nieodłącznym elementem nowoczesnej medycyny i farmacji. W 2025 roku jej znaczenie w branży farmaceutycznej będzie bardziej widoczne niż kiedykolwiek. Wdrożenie technologii sztucznej inteligencji, wprowadzenie zaawansowanych algorytmów, integracja z big data i rozwój technologii obliczeniowych zmienią sposoby projektowania leków, prowadzenia badań klinicznych oraz personalizacji terapii.

Czytaj więcej
blogpost
Artykuły

Wpływ sztucznej inteligencji na branżę obsługi klienta

Obsługa klienta, choć często niedoceniana, jest istotnym działem nowoczesnych firm, odpowiedzialnym za utrzymywanie i wzmacnianie relacji z klientami. W ostatnich latach rewolucja w obsłudze klienta następuje na skutek wdrożenia licznych rozwiązań AI. Wsparcie sztucznej inteligencji umożliwia organizacjom realizację wydajnej, spersonalizowanej i responsywnej obsługi klienta, umożliwiając budowanie silnych relacji na konkurencyjnym rynku. Ale spójrzmy prawdzie w […]

Czytaj więcej
blogpost
Artykuły

Przemysł motoryzacyjny a sztuczna inteligencja

Branża motoryzacyjna przechodzi rewolucję napędzaną przez szybki rozwój technologii sztucznej inteligencji (AI). Sztuczna inteligencja, w tym rozwój autonomicznych pojazdów, embedded AI, wizja komputerowa, przetwarzanie języka naturalnego i uczenie maszynowe w branży motoryzacyjnej, zmienia wszystko, od sposobu produkcji samochodów po interakcję z klientami. Z tego artykułu dowiesz się, w jaki sposób innowacje w zakresie sztucznej inteligencji: […]

Czytaj więcej
blogpost
Artykuły

5 najlepszych praktyk analityki w czasie rzeczywistym

Analityka w czasie rzeczywistym rewolucjonizuje proces podejmowania decyzji, dzięki zapewnieniu natychmiastowego wglądu w działania strategiczne. Odkryj kluczowe strategie sukcesu, od optymalizacji czasu analityki, po wspieranie płynnego udostępniania danych ponad granicami organizacyjnymi. Dowiedz się jak wykorzystać potencjał analityki w czasie rzeczywistym, w celu usprawnienia operacji i uzyskania przewagi konkurencyjnej. Wprowadzenie W szybko zmieniającym się świecie cyfrowym, […]

Czytaj więcej
blogpost
Artykuły

Czy sztuczna inteligencja zdominuje wizję przyszłości i rozwoju cloud computing?

Początek roku to okres wzmożonych podsumowań minionych miesięcy, a także przygotowywania planów na kolejne. W tym czasie pojawia się wiele mniej lub bardziej trafnych predykcji na temat tego, czego możemy spodziewać się w najbliższej przyszłości w ramach oferowanych przez dostawców usług w chmurze. W przypadku chmury obliczeniowej możemy z dużym prawdopodobieństwem przewidzieć, co w takich […]

Czytaj więcej
blogpost
Artykuły

Bezpieczeństwo chmury Azure: Jak zapewnić model Zero Trust i wykorzystać AI na swoją korzyść? (cz.2)

W poprzednim artykule poruszyliśmy temat czym jest model Zero Trust i dlaczego jest tak istotny w zapewnieniu najwyższego poziomu bezpieczeństwa zasobów firmy w chmurze i poza nią. W tej części będziemy kontynuować przegląd usług chmury publicznej Azure a także skupimy się na wątku AI w temacie bezpieczeństwa. Microsoft Defender dla chmury Microsoft Azure to rozległe […]

Czytaj więcej
blogpost
Artykuły

Bezpieczeństwo chmury Azure: Jak zapewnić model Zero Trust i wykorzystać AI na swoją korzyść? (cz.1)

Od czasu globalnej popularyzacji pracy zdalnej, zespoły cyberbezpieczeństwa stają przed coraz większymi wyzwaniami, aby zapewnić skuteczny i bezpieczny dostęp do krytycznych zasobów oraz danych organizacji, a także zagwarantować ich bezpieczne przechowywanie. Skomplikowane ataki phishingowe (wpływające krytycznie na bezpieczeństwo plików oraz infrastruktury), nie rzadko wspomagane AI, w wyniku których ujawniane są dane uwierzytelniające, pozwalają na ataki z […]

Czytaj więcej
blogpost
Artykuły

7 sposobów jak widoczność danych zwiększa efektywność produkcji

XXI wiek to czas kiedy dane odgrywają coraz większą rolę, a trend ten zauważalny jest również w branży produkcyjnej. Gromadzenie ich to jednak za mało. Dopiero dzięki dostępowi do danych operacyjnych i zapewnieniu ich widoczności w czasie rzeczywistym, firmy mogą monitorować linie produkcyjne, identyfikować wąskie gardła i podejmować oparte na danych decyzje, również z wykorzystaniem sztucznej inteligencji (AI) i uczenia maszynowego (ML).

Czytaj więcej
blogpost
Artykuły

Obliczenia kwantowe: Kot Schrödingera zadomowił się w chmurze

Zapnij pasy i dołącz  do mnie w podróży do świata, w którym kot może być zarówno martwy, jak i żywy, a cząsteczka może znajdować się w dwóch miejscach jednocześnie. Odkryjemy fascynujący świat obliczeń kwantowych (Quantum Computing) i ich rolę w przetwarzaniu w chmurze.

Czytaj więcej
blogpost
Artykuły

W jaki sposób sztuczna inteligencja wpłynie na prognozowanie popytu w łańcuchu dostaw?

Sprawdź, jak sztuczna inteligencja rewolucjonizuje zarządzanie łańcuchem dostaw, poprawiając prognozowanie popytu i efektywność operacji. Kliknij, aby dowiedzieć się więcej.

Czytaj więcej
blogpost
Artykuły

(r)Ewolucja w zarządzaniu danymi produkcyjnymi. Platformy danych w chmurze

Platformy danych oparte na chmurze stają się przełomem w zarządzaniu danymi produkcyjnymi. W przeszłości firmy zmagały się z zarządzaniem ogromnymi ilościami danych generowanych przez procesy produkcyjne bez wsparcia automatyzacjami, AI i często w modelu rozproszonym tzn. dane pochodziły i były wyświetlane w różnych źródłach. Nie było to ani wygodne, ani efektywne. Na szczęście ten czas już minął.

Czytaj więcej
blogpost
Artykuły

Jak AI Data Discovery pomaga firmom produkcyjnym?

Odkryj przyszłość przemysłu produkcyjnego dzięki usłudze AI Data Discovery i chmurze! Poznaj, jak te technologie i usługi eliminują straty i zwiększają efektywność branży produkcyjnej.

Czytaj więcej
blogpost
Artykuły

Predictive Maintenance (konserwacja predykcyjna) – biały kruk vs realistyczne rozwiązanie?

Jak donosi Forbes i szereg innych, niedawno opublikowanych raportów na temat najbliższej przyszłości branży produkcyjnej, predictive maintenance jest postrzegane jako jeden z niekwestionowanych, wiodących trendów na rok 2022, jeśli chodzi o Przemysł 4.0. Już dziś można zaobserwować pojawiające się zapotrzebowanie na zaawansowaną analitykę i prognozowanie oparte na sztucznej inteligencji. Mimo niewątpliwej wartości, która się z […]

Czytaj więcej
blogpost
Artykuły

5 kroków do udanego wdrożenia analityki przemysłowej – etap w transformacji cyfrowej przedsiębiorstwa

Cyfrowa transformacja dzieje się na naszych oczach. Aby dotrzymać kroku konkurencji, coraz więcej firm produkcyjnych stosuje nowoczesne technologie i odchodzi od tradycyjnego podejścia na rzecz koncepcji Przemysłu 4.0

Czytaj więcej

Zostańmy w kontakcie

Skontaktuj się