Dealing with plant malfunctions is part of the daily routine in a production facility. However, the reporting process in many companies is treated step motherly and ranges from telephone reports to paper lists to complex entries on a central screen. The latter in turn leads to reports not being made via the system, but via telephone.

Measures for Digital Maintenance

As a result, a lot of valuable data is not available to the company, although it is actually supplied almost free of charge and could even lead to condition-based monitoring of the systems through clever linking and analysis.

So how can digital maintenance be better addressed and what measures do companies need to take to achieve these business objectives?

Digital maintenance is a crucial aspect of modern industrial operations, aiming to optimize maintenance processes through the effective use of digital technologies. One of the most powerful tools in this pursuit is AI-based industrial analytics, particularly predictive maintenance. By leveraging artificial intelligence algorithms and machine learning models, companies can transition from reactive maintenance approaches to proactive strategies, significantly reducing downtime and enhancing overall equipment reliability functions.

The simple digital message

Simple – the keyword.

The first step is the simple and fast reporting of a malfunction on a machine by the worker: intuitive and easy-to-use apps on a smartphone are the solution for the first step.

Simplifying maintenance reporting and data collection is vital for enhancing digital maintenance practices. AI-based industrial advanced analytics solutions offer a straightforward and efficient way to report malfunctions on machines. Intuitive smartphone apps equipped with AI-driven features empower workers to generate informative messages with just a few clicks. Through artificial intelligence integration, detailed reports with time stamps, machine information, asset data, and malfunction descriptions are automatically generated, streamlining the reporting process and ensuring valuable data is readily available for equipment data.

The maintenance department now has all the information and by linking to other existing data, the stock of spare parts can be viewed immediately, or orders can be triggered semi-automatically if required. At the same time, the order can be used to book the expenses with the necessary account assignments.

Predict failures and transmission of the status in real time – it could hardly be simpler or faster.

Digital transformation in maintenance management with TT PSC

Digital Transformation in Maintenance management

Digitalization is reshaping industries, and digital maintenance plays a pivotal role in this transformation. To unlock the full potential of digitalization, companies must embrace AI-based predictive maintenance as part of their initiatives in computerized maintenance management system. Advanced Analytics solutions powered by artificial intelligence enable businesses to extract valuable insights from vast amounts of data collected and accelerate digital transformation. This integration facilitates condition-based monitoring, where real-time sensor data is continuously analyzed to anticipate maintenance needs and initiate timely interventions, leading to more efficient maintenance operations, and decrease operational costs, and preventing unplanned downtime.

Through monitoring, the data of the production facilities are linked to the time of occurrence and thus investigations can be carried out as the first measures. This analysis and linking of further asset data, in the context of digital transformation in maintenance, also from the past and from different sources in the company, is a small, manageable first step towards a condition-based maintenance monitoring system and well-maintained equipment.

From Digital Maintenance to Condition Based Monitoring

As soon as the message is available in the system as described above, the evaluation of the machine data can be started immediately.

By analyzing the available asset data and linking the data with the actual state of the machine directly during the malfunction (timestamp), conclusions can be drawn about the exact root cause of the malfunction and measures can be initiated to restore the target state.

The integration of AI-based predictive maintenance into digital maintenance strategies paves the way for condition-based monitoring systems. By leveraging AI algorithms to analyze historical data and real-time equipment performance, companies gain significant benefits such as a comprehensive understanding of machinery, asset health, and performance issues. Predictive insights enable them to identify potential issues before they escalate, allowing for targeted maintenance efforts and minimizing production disruptions. This shift from reactive to proactive maintenance results in improved productivity and optimized resource allocation.

Through this analysis, values can be set per plant that define the target state of a specific plant component at which the production plants run without quality losses. Furthermore, it can be analyzed when downtime is likely to occur in the future. If further factors are considered and simple Lear algorithms from e.g., Python are applied, the prediction for the time of equipment failures can be regularly optimized.

By finding a dedicated solution to a problem using regressions and correlations, the first, simple step into predictive maintenance is successfully taken.

It is important to have a real understanding of processes and data for this scenario. This is because there is not a lot of data from which the appropriate correlations have to be found and the correlations for predictive maintenance, possibly also through the technical intuition of an engineer.

With these prerequisites, as well as the exact identification of the time of the problem, specific predictions can be made about disruptions occurring with a relatively manageable effort and negative effects for the company can be avoided.

AI-based condition monitoring - Transition Technologies PSC

Embrace the Power of Digital Maintenance

Digital Maintenance is not only important for a simple maintenance process. It is the basis for a condition-based monitoring system.

Digital maintenance simplifies the maintenance process and provides more transparency with up-to-date information. With this maintenance strategy, companies can significantly improve their plant availability and avoid downtime.

Through the automatic link with the ERP, the recording of maintenance costs and inventory become part of the initiative, benefiting asset-intensive industries.

By linking the machine data, a condition-based monitoring system is ultimately achieved.

Digital maintenance, empowered by AI-based industrial analytics, is revolutionizing the way industries approach maintenance and reliability functions. By embracing AI-driven data collection, analysis, and predictive insights, companies can elevate their maintenance practices, enhance equipment reliability, and maximize overall productivity with Digital maintenance simplifies the maintenance process and provides more transparency by up-to-date information.

Digitalization combined with predictive maintenance enables businesses to eliminate safety risks through detailed description, optimize maintenance schedules, and reduce operational costs. In this age of technological advancement, embracing digital maintenance and AI-driven solutions is essential for staying competitive advantage and future-ready.

Our Cutting-Edge Industrial Analytics Accelerator with predictive maintenance module

To further enhance your digital maintenance capabilities, we are thrilled to introduce our cutting-edge Industrial Analytics Accelerator for Industry, leveraging the latest AI technologies. This solution is designed to empower your company with advanced AI-based predictive maintenance, anomaly detection, and predictive quality solutions, enabling you to stay at the forefront of implementing digital transformation and productivity in your industry.

Read more about Industrial Analytics Accelerator and watch the demo.

Industrial Analytics Accelerator

_All posts in this category

blogpost
Articles

The impact of artificial intelligence on the customer service industry

Customer service, though often underestimated, is an important department of modern companies, responsible for maintaining and strengthening customer relationships. In recent years, a revolution in customer service is taking place due to the implementation of numerous AI solutions. The support of AI enables organizations to realize efficient, personalized, and responsive customer service, enabling them to […]

Read more
blogpost
Articles

Automotive industry and artificial intelligence

The automotive sector is undergoing a revolution driven by the rapid development of AI technology. AI, including the development of self driving vehicles, computer vision algorithms, natural language processing, and machine learning algorithms, is transforming transforming the automotive industry from car making process to how customers interact with them. In this article, you will learn […]

Read more
blogpost
Articles

Top 5 tips for ‘Real-Time Analytics’

Real-time analytics can revolutionize decision-making providing immediate valuable insights to drive strategic actions. From optimizing timing for analytics to fostering seamless data sharing across organizational boundaries, uncover the key strategies for success in leveraging real-time insights. Don’t miss out on unlocking the potential of real-time analytics to streamline operations and gain a competitive advantage. Introduction […]

Read more
blogpost
Articles

How can artificial intelligence influence the vision of the future and cloud computing development?

The beginning of the year is a time of intensified summary of the past months, as well as preparation of plans for the upcoming ones. During this period, there are many more or less accurate predictions about what we can expect shortly in the multiple cloud providers offer.

Read more
blogpost
Articles

Azure Cloud Security: How to ensure the Zero Trust Model and use AI to our advantage?

Since the global popularization of remote work in recent years, IT security teams are facing ever-increasing challenges to ensure effective and secure access to organizations’ critical assets, resources, and data.Elaborate phishing attacks, through which user credentials are being exposed, allowing for lateral movement attacks or installing ransomware on mission-critical infrastructure. Zero-day vulnerabilities enable malicious actors to disrupt accessed services.

Read more
blogpost
Articles

Quantum Computing: Where Schrödinger’s Cat gets cozy in the Cloud

Join me for a journey that will take us from the realm of reality as we know it to a world where a cat can be both: dead and alive, and a particle can be in two places at once. Fasten your seatbelts as we explore the fascinating world of quantum computing and its role in cloud computing.

Read more
blogpost
Articles

Optimize inventory and save money with accurate retail demand forecasting

Discover why demand forecasting is a key element in retail. Traditional methods have their limitations in an era of digital transformation, but modern solutions based on artificial intelligence and machine learning allow for more accurate forecasting. Find out what opportunities these new technologies offer and how they can impact demand forecasting in the supply chain.

Read more
blogpost
Articles

How will AI change demand forecasting in the supply chain?

Read more
blogpost
Articles

The critical role of cloud-based data platforms. Reshaping manufacturing data management

Cloud-based data platforms revolutionize manufacturing data management by efficiently handling vast amounts of data in real-time. Manufacturers can collect data from various processes, analyze it with advanced tools like AI/ML algorithms and BI, and make informed decisions. These platforms offer key benefits, vital elements, and integration with Data Strategy.

Read more
blogpost
Articles

7 ways how data visibility helps manufacturing improve efficiency

In the manufacturing industry, efficiency is key to staying competitive and profitable. One way to improve efficiency is through data visibility. By having access to real-time visibility of the operational data throughout the manufacturing process, companies can identify bottlenecks, monitor production lines, and make data-driven decisions. In this article, we'll explore how data visibility can help manufacturing companies improve their efficiency and ultimately their bottom line.

Read more
blogpost
Articles

How can AI Data Discovery help manufacturing companies?

We are all blessed to live in very exciting times. Exponential technological progress over the last couple of decades has influenced not only our personal lives but also heavily impacted business. Trends are obviously evolving occasionally, but it is safe to say that now is the time of advanced analytics.

Read more
blogpost
Articles

What is Predictive Maintenance in Industry 4.0? – solution for Smart Factory

Discover the game-changing power of predictive maintenance! Forbes and numerous reports agree that it's a must-know trend for Industry 4.0 in 2022. Imagine having advanced analytics and AI-based forecasting at your fingertips, enabling you to prevent costly breakdowns and optimize your manufacturing processes.

Read more
blogpost
Articles

How successfully adopt Industrial AI analytics. 5 Tips for Business

Analytics does not exist without high-quality structured data. Garbage in - garbage out. The quality of the output depends on the quality of the input data - it's that simple. Learn how you can achieve successful Industrial AI Analytics Adoption in your Business.

Read more

Let’s get in touch

Contact us